Clustering in Aggregated User Profiles across Multiple Social Networks

نویسندگان

  • Charu Virmani
  • Anuradha Pillai
  • Dimple Juneja
چکیده

Received Apr 18, 2017 Revised May 30, 2017 Accepted Jun 15, 2017 A social network is indeed an abstraction of related groups interacting amongst themselves to develop relationships. However, toanalyze any relationships and psychology behind it, clustering plays a vital role. Clustering enhances the predictability and discoveryof like mindedness amongst users. This article’s goal exploits the technique of Ensemble Kmeans clusters to extract the entities and their corresponding interestsas per the skills and location by aggregating user profiles across the multiple online social networks. The proposed ensemble clustering utilizes known K-means algorithm to improve results for the aggregated user profiles across multiple social networks. The approach produces an ensemble similarity measure and provides 70% better results than taking a fixed value of K or guessing a value of K while not altering the clustering method. This paper states that good ensembles clusters can be spawned to envisage the discoverability of a user for a particular interest. Keyword:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network

The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...

متن کامل

User-centered Social Network Profiles Integration

Large scale online social networks (OSNs) such as Facebook, Twitter, LinkedIn, have become an important part of our every day life. Users are connected to multiple OSNs in which they maintain their different profiles including a lot of personal and social information. As the number of friends of a given user may grow so rapidly, it becomes impossible to manage all updates from friends’ profiles...

متن کامل

Digital Stylometry: Linking Profiles Across Social Networks

There is an ever growing number of users with accounts on multiple social media and networking sites. Consequently, there is increasing interest in matching user accounts and profiles across different social networks in order to create aggregate profiles of users. In this paper, we present models for Digital Stylometry, which is a method for matching users through stylometry inspired techniques...

متن کامل

Programme Committee Additional Reviewer Organisation Commitee Contents Setting Access Permission through Transitive Relationship in Web-based Social Networks . . . . . 9 a Study of User Profile Generation from Folksonomies

Recommendation systems which aim at providing relevant information to users are becoming more and more important and desirable due to the enormous amount of information available on the Web. Crucial to the performance of a recommendation system is the accuracy of the user profiles used to represent the interests of the users. In recent years, popular collaborative tagging systems such as del.ic...

متن کامل

A meta-heuristic clustering method to reduce energy consumption in Internet of Things

The Internet of Things (IoT) is an emerging phenomenon in the field of communication, in which smart objects communicate with each other and respond to user requests. The IoT provides an integrated framework providing interoperability across various platforms. One of the most essential and necessary components of IoT is wireless sensor networks. Sensor networks play a vital role in the lowest l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017